Please wait a minute...
浙江大学学报(工学版)
航空航天技术     
基于扰动观测器的多旋翼无人机机载云台模糊自适应跟踪控制
王日俊1,2, 白越1, 续志军1, 宫勋1, 张欣1,2,3, 田彦涛4
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033; 2. 中国科学院大学,北京 100039; 3. 长春工程学院 电气与信息工程学院,吉林 长春 130012;4. 吉林大学 通信学院,吉林 长春 130025
Fuzzy self adjusting tracking control based on disturbance observer for airborne platform mounted on multi rotor unmanned aerial vehicle
WANG Ri jun1,2, BAI Yue1, XU Zhi jun1, GONG Xun1, ZHANG Xin1,2,3, TIAN Yan tao4
1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China;2. University of Chinese Academy of Science, Beijing 100039, China; 3. School of Electrical and Information  Technology, Changchun Institute of Technology, Changchun 130012, China; 4. School of Telecommunication Engineering, Jilin University, Changchun 130025, China
 全文: PDF(1034 KB)   HTML
摘要:

为了补偿多旋翼无人机机载云台的扰动,实现机载云台的稳定跟踪控制,提出基于改进扰动观测器的模糊自适应跟踪控制方法.在原有扰动观测器结构的反馈回路中引入一个补偿控制,构建基于速度信号的改进型扰动观测器结构,分析该结构的补偿扰动能力和鲁棒性;利用模糊系统的逼近性质和李雅普诺夫稳定性原理,设计相应的模糊自适应跟踪控制结构,证明了该控制结构的稳定性.飞行实验表明,应用该控制方法后,视轴稳定误差的均方值小于0.02°,跟踪给定位置信号的跟踪误差小于0.08°,完全能够满足多旋翼无人机机载云台的稳定跟踪控制.引入补偿控制后的扰动观测器补偿扰动能力明显提高,提出的控制方法具有较高的稳定跟踪精度.

Abstract:

A scheme of fuzzy self adjusting tracking control based on an improved disturbance observer (DOB) was proposed in order to compensate disturbance and accomplish the stabilized tracking control for airborne platform mounted on multi rotor unmanned aerial vehicle. A compensated control was introduced into feedback loop which is in the structure of original disturbance observer. An improved disturbance observer was constructed based on velocity signals. The ability of disturbance compensation and robustness were analyzed. A fuzzy self adjusting tracking control structure was designed according to the approaching property of fuzzy system and Lyapunov stability theory. The stability of the tracking control structure was proved. The flight experiment results showed that the mean square error of line of sight was below 0.02° and the error of tracking reference position was less than 0.08° after applying the proposed scheme. Results demonstrate that the proposed scheme can completely satisfy the stabilized tracking control demand of airborne platform. The disturbance rejected ability was significantly improved after introducing the compensated control. The proposed control method possessed upper stabilized tracking accuracy.

出版日期: 2015-10-29
:  TP 273  
基金资助:

国家自然科学基金资助项目(11372309,61304017);院省专项资助项目(2014YSHZ004).

通讯作者: 白越,男,副研究员.     E-mail: baiy@ciomp.ac.cn
作者简介: 王日俊(1982—),男,博士生,从事无人机载荷稳像技术的研究. ORCID: 0000 0003 1576 0793. E-mail: wangrijun1982@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王日俊, 白越, 续志军, 宫勋, 张欣, 田彦涛. 基于扰动观测器的多旋翼无人机机载云台模糊自适应跟踪控制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.10.025.

WANG Ri jun, BAI Yue, XU Zhi jun, GONG Xun, ZHANG Xin, TIAN Yan tao. Fuzzy self adjusting tracking control based on disturbance observer for airborne platform mounted on multi rotor unmanned aerial vehicle. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.10.025.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.10.025        http://www.zjujournals.com/eng/CN/Y2015/V49/I10/2005

[1] 李迪.微型飞行器电子稳像技术研究[D].长春:中国科学院长春光学精密机械与物理研究所, 2012.
LI Di. Study on electronic digital image stabilization technology for the image sequences of MAV [D]. Changchun: Changchun Institute of Optics, FineMechanics and Physics, Chinese Academy of Science,2012.
[2] MEI Y, ZHAO H Y, GUO S Y. The analysis of Image Stabilization technology based on small UAV airborne video [C]∥Proceedings of IEEE International Conference on Computer Science and Electronics Engineering. Hangzhou: IEEE, 2012: 586-589.
[3] UMENO T, KANEKO T, HORI Y. Robust servo system design with two degrees of freedom and its application to novel motion control of robot manipulators [J]. IEEE Transactions on Industrial Electronics, 1993, 40(5):473-485.
[4] 陆建山,王昌名,何云峰,等.改进型扰动干扰器在稳定平台伺服系统中的应用[J].振动与冲击, 2013, 32(8): 96-99.
LU Jian shan, WANG Chang ming, HE Yun feng, et al. Application of improved disturbance observer in a stable platform servo system [J]. Journal of Vibration and Shock, 2013, 32(8): 96-99.
[5] 任彦,刘正华,周锐.滑模干扰观测器在低速光电跟踪系统中的应用[J].北京航空航天大学学报, 2013, 39(6): 835-840.
REN Yan, LIU Zheng hua, ZHOU Rui. Application of low speed opto electronic tracking systems based on sliding mode disturbance observer [J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(6): 835-840.
[6] 李嘉全,丁策,孔德杰,等.基于速度信号的扰动观测器及在光电稳定平台的应用[J].光学精密工程,2011, 19(5): 998-1004.
LI Jia quan, DING Ce, KONG De jie, et al. Velocity based disturbance observer and its application to photoelectric stabilized platform [J]. Optics and PrecisionEngineering, 2011, 19(5): 988-1004.
[7] 谢巍,何忠亮.采用改进型扰动观测器的控制方法[J].控制理论与应用,2010, 27(6): 695-700.
XIE Wei, HE Zhong liang. Control method withimproved disturbance observer [J]. Control Theory and Application, 2010, 27(6): 695-700.
[8] 高嵩,徐晓霞,肖秦琨,等.机载光电跟踪系统的模糊自适应控制[J].西安工业大学学报, 2009, 29(6): 565-569.
GAO Song, XU Xiao xia, XIAO Qin kun, et al. The research on fuzzy self adjusting control of airborne electro optical pointing and tracking systems [J]. Journal of Xi’ an Technological University, 2009, 29(6): 565-569.
[9] 朱海荣,李奇,顾菊平,等.扰动补偿的陀螺稳定平台单神经元自适应PI控制[J].电机与控制学报, 2012,16(3): 65-77.
ZHU Hairong, LI Qi, GU Ju ping, et al. Single neuron adaptive PI control of the gyro stabilized platform based on disturbance compensation [J]. ElectricMachines and Control, 2012, 16(3): 65-77.
[10] KHALIL H K. Nonlinear system [M]. 3rd ed. New Jersey: Prentice Hall, 2002: 24.
[11] HU Hong jie, YUE Jin yu, ZHANG Ping. A control scheme based on RBF neural network for high precision servo system [C]∥Proceedings of IEEE International Conference on Mechatronics and Automation. Xi′an: IEEE, 2010.
[12] MILLER R, MOOTY G, HILKERT J M. Gimbal system configurations and line of sight control techniques for small UAV applications [C]∥AirborneIntelligence, Surveillance, Reconnaissance (ISR) Systems and Applications X, 871308. Baltimore: SPIE,2013.
[13] 扈宏杰,王元哲.机载光电平台的复合补偿控制方法[J].光学精密工程, 2012, 20(6): 1272-1281.
HU Hong jie, WANG Yuan zhe. Composite compensation control scheme for airborne opto electronic platform [J]. Optics and Precision Engineering, 2012,20(6): 1272-1281.
[14] 刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社, 2003: 102-110.
[15] 丁建强,任晓,卢亚平.计算机控制技术及其应用[M].北京:清华大学出版社, 2012: 108-120.

[1] 王青, 余小光, 乔明杰, 赵安安, 程亮, 李江雄, 柯映林. 基于序列二次规划算法的定位器坐标快速标定方法[J]. 浙江大学学报(工学版), 2017, 51(2): 319-327.
[2] 周锋, 顾临怡, 罗高生, 陈宗恒. 电液比例式推进系统的自适应反演滑模控制[J]. 浙江大学学报(工学版), 2016, 50(6): 1111-1118.
[3] 金鑫, 梁军. 基于动态PLS框架的多变量无静差预测控制[J]. 浙江大学学报(工学版), 2016, 50(4): 750-758.
[4] 贾驰千, 冯冬芹. 基于模糊层次分析法的工控系统安全评估[J]. 浙江大学学报(工学版), 2016, 50(4): 759-765.
[5] 费少华,刘丹,乔明杰,章明,方强. 端框移动平台双驱同步控制系统设计[J]. 浙江大学学报(工学版), 2016, 50(1): 85-92.
[6] 宋志强, 周献中, 李华雄. 多地面无人平台协同尾随跟踪[J]. 浙江大学学报(工学版), 2015, 49(12): 2349-2354.
[7] 仇翔, 宋海裕, 俞立. 基于平均驻留时间方法的牛鞭效应稳定化控制[J]. 浙江大学学报(工学版), 2015, 49(10): 1909-1915.
[8] 覃展斌, 陈飞飞, 金波, 张璐璐. 电液比例阀阀心位置控制PID自整定方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1503-1508.
[9] 孙文达, 李平, 方舟. 无人直升机动态逆时滞不确定鲁棒最优控制[J]. 浙江大学学报(工学版), 2015, 49(7): 1326-1334.
[10] 陶国良,左赫,刘昊. 气动肌肉-气缸并联平台结构设计及位姿控制[J]. 浙江大学学报(工学版), 2015, 49(5): 821-828.
[11] 窦亚冬,王青,李江雄 柯映林. 飞机数字化装配系统数据集成技术[J]. 浙江大学学报(工学版), 2015, 49(5): 858-865.
[12] 罗中海, 孟祥磊, 巴晓甫, 费少华, 方强. 飞机大部件调姿平台力位混合控制系统设计[J]. 浙江大学学报(工学版), 2015, 49(2): 265-274.
[13] 罗高生, 顾临怡, 李林. 基于鲁棒观测器的肘关节鲁棒自适应控制[J]. 浙江大学学报(工学版), 2014, 48(10): 1758-1766.
[14] 曲巍崴, 石鑫, 董辉跃, 封璞加, 朱灵盛, 柯映林. 气动锤铆过程仿真分析与试验[J]. 浙江大学学报(工学版), 2014, 48(8): 1411-1418.
[15] 方强, 周庆慧, 费少华, 孟祥磊, 巴晓甫, 张燕妮, 柯映林. 末端执行器压脚气动伺服控制系统设计[J]. 浙江大学学报(工学版), 2014, 48(8): 1442-1450.